Weighted and Mixed Norm Estimates for Oscillatory Fourier
نویسندگان
چکیده
In this working paper we suggest some lines of investigation regarding oscillatory Fourier transforms with homogeneous phase. A special case is the solution to the time-dependent free Schrr odinger equation. We consider time-global range-weighted L 2 ? R n+1-estimates. The main tools are Parseval's formula for Fourier transforms on R, orthogonality arguments arising from decomposing L 2 (R n) using spherical harmonics and a uniform estimate for Bessel functions. Homogeneity arguments will be used to show that results are sharp with respect to regularity. We also consider a mixed norm estimate which arise in a natural way when applying Pitt's inequality instead of Parseval's formula. For a special case of one of the results below the proof has been carried out. See 6]. Otherwise results are preliminary in nature. All results are stated without proofs.
منابع مشابه
Essential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملEstimates of Norm and Essential norm of Differences of Differentiation Composition Operators on Weighted Bloch Spaces
Norm and essential norm of differences of differentiation composition operators between Bloch spaces have been estimated in this paper. As a result, we find characterizations for boundedness and compactness of these operators.
متن کاملAn equivalent representation for weighted supremum norm on the upper half-plane
In this paper, rstly, we obtain some inequalities which estimates complex polynomials on the circles.Then, we use these estimates and a Moebius transformation to obtain the dual of this estimates forthe lines in upper half-plane. Finally, for an increasing weight on the upper half-plane withcertain properties and holomorphic functions f on the upper half-plane we obtain an equivalentrepresenta...
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملWeighted norm inequalities for integral transforms
Weighted (L, L) inequalities are studied for a variety of integral transforms of Fourier type. In particular, weighted norm inequalities for the Fourier, Hankel, and Jacobi transforms are derived from Calderón type rearrangement estimates. The obtained results keep their novelty even in the simplest cases of the studied transforms, the cosine and sine Fourier transforms. Sharpness of the condit...
متن کامل